

100 Gbit/s SELF-BIASED PHOTODETECTOR MODULE

AT A GLANCE

- O/E conversion without power supply
- Ultra-high bandwidth
- C-band operation

Features

- O/E conversion up to 107 Gbit/s
- In ESD critical environments, high-voltage (e.g. 100 kV) terminals
- No external biasing
- Wavelength range 1480-1620 nm
- Packaged into modules with fibre pigtail (FC/PC) and a female 1mm connector

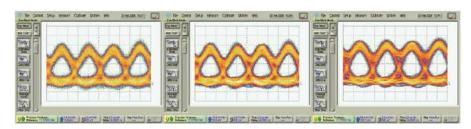
Applications

- Remote sensing
- Remote o/e conversion
- Remote antenna feeding

www.hhi.fraunhofer.de Products and Solutions

Miscellaneous Features

Operating bias	none, generated internally
Output match	to 50 Ohm (integrated)
Electrical coupling	DC
Optical input	FC/PC
	(or customer specific)
RF output	1 mm female (Agilent)
Max. optical input	+20 dBm

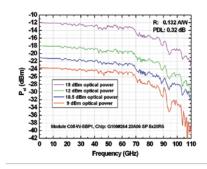

Preliminary Specifications

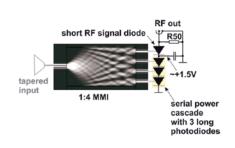
Responsivity	0.13 A/W (and higher)
3 dB bandwidth	73 GHz
PDL	0.4 dB
Power linearity	19 dBm (at 1 dB compression)
Dynamical range	> 55 dBel.
Pulse width	8 ps
Optical return loss	25 dB

Optical input condition

Opt. input pulses RZ: 2 ps, OTDM multiplexed, PRBS 2⁷-1, recorded with scope: 70 GHz Agilent 86100B with 86118A.

Eye Pattern at 107 Gbit/s Datarates




+6 dBm (7.5 mV/div)

+9 dBm (15 mV/div)

+15 dBm (50 mV/div)

Bandwidth and Dynamical Range

The photodetector modules are lab samples and should not be used on any life critical application without prior written permission from the supplier. Specifications are subject to change without notice due to further product improvements.

The Fraunhofer HHI

One of the prime research and development foci of the Fraunhofer Heinrich Hertz Institute lies in photonic networks, components and systems and their application in fields such as digital media.

Contact

Dr.-Ing. Patrick Runge

Photonic Components Fraunhofer Heinrich Hertz Institute

Einsteinufer 37 | 10587 Berlin | Germany

Tel +49 30 31002-498 Mobil +49 151 46148172 patrick.runge@hhi.fraunhofer.de